
1

Remote-Control for Telescope
Arjan te Marvelde, initial version Jan 2016, this version Mar 2024

Optimum observation time on higher latitudes is usually during the winter and early spring. These months can
also be quite cold, and hence observation and astrophotography are less than comfortable. So, it is time for a
remote-control facility, enabling the operation of mount and astrophotography from inside the warm house.

This document describes a self-contained control station that can be put in a box or even inside the RA unit of an
NEQ-6 mount. It can be left alone to capture images during the night, but it can also be controlled remotely
through wired or wireless network, from a more convenient location.

Previous versions have been based on dual Raspberry Pi2B, a single Raspberry Pi3B, but now the Pi4 has
emerged and the box is upgraded once more. The Pi5 has not yet been tried, but would give about twice the
performance. The document describes step-by-step how I made my software configuration, based on Ubuntu
server, MATE user interface, the INDI framework, EKOS/KStars and PHD2. The description is chopped up in parts
which may also be used independently.

This following topics are covered:

• Design choices Detailing on the system design backgrounds

• Hardware Configuration Overview of hardware related issues

• Software Configuration The complete SW installation process

• References Some handy references

2

Summary

INDI box

• RPi4-4GB with a fast 64GB SD, running the latest Ubuntu, providing a WiFi hotspot access point as well
as an Ethernet interface to connect to an upstream network.

• The RPi4 hosts EKOS/KStars, INDI-server, PHD2, Astrometry plate solver and all INDI drivers, and it runs
a light weight MATE desktop with a VNC server (x11vnc) for remote access.

• The RPi4 is enclosed in a small unit to be mounted inside the NEQ6 RA housing, that provides 12V
power and USB or serial data interfaces to all peripherals.

• The box also contains a U-Blox NEO8 GPS receiver for time synchronization and local coordinates.

Devices

• A Canon 450D DSLR is connected through USB and a dedicated power adapter,

• The NEQ6 mount is connected internally through a serial interface,

• The GPS is connected internally through a serial interface, for time and position,

• A home made joystick is connected through USB,

• A ZWO ASI385MC autoguider / planetary camera also connected through USB.

User interface

• A Laptop, which has a wireless (or wired) connection to the INDI box.

• The Windows laptop hosts a VNC client (RealVNC) enabling GUI access to the RPi desktop. This laptop
could be replaced with any other device hosting a VNC client.

• Alternatively, a small LUbuntu netbook can be connected through VNC

• Even an Android smartphone running RealVNC can be used as remote desktop

3

Design choices

One option for implementing remote-control is to route a lot of cables from the observation location into the
house. A much more elegant way is to run all device-interfacing on a local embedded computer and to have a
remote workstation for controlling the observatory setup. This is exactly what the INDI framework offers: a
server that provides a standardized method to access and control the variety of attached devices, such as goto,
camera and auto guider. The INDI server connects to an INDI compatible client on a workstation, through any IP
network, such as the home LAN.

Regular Architecture

When the workstation PC is Windows based, the choice of clients boils down to Cartes du Ciel for goto control
and the photo capturing software CCD-Ciel. The main alternative KStars / EKOS is running on Linux.

A more robust solution is to use a remote virtual desktop and run the INDI client on the remote computer as
well. The network then may fail while the remote telescope control continues to function. However, allocating
both INDI server and clients to the remote computer implies that significantly more processing power is needed.
One solution is to base the control unit on dual RPi2, to distribute the load. The RPi3 and certainly the RPi4
appear to be powerful enough to run everything in one processor. The user interface is a virtual desktop,
running on the Windows workstation or even on a tablet or a smart-phone.

VNC based architecture

4

Hardware configuration

Inside the INDI box, the RPi4 can easily be located. The GPS receiver and antenna are mounted on top of that,
and to the left the 3A SMPS for the RPi4 power provisioning.

The INDI box

The first version of hardware configuration has been built into a Teco plastic enclosure, which has plenty space.

Inside the INDI box

In the picture you can see the RPi4 to the right, underneath a GPS unit (U-Blox NEO6) and a utility board. A
3Amp 5V buck converter is connected to the power pins on the RPi GPIO connector. The lot runs on
approximately 12V (from a PSU or battery) which is also output directly on the front to supply the NEQ6, the
DSLR and a fan. These outlets should really be fused separately...

A 25mm/12V fan has been added as the RPi-4 generates more heat than its predecessors.

5

Indi inside NEQ6

The current implementation integrates the lot inside the NEQ6 mount, replacing the service panel.

Here the NEQ mount is connected directly to a serial interface on the RPi4 GPIO connector, just like the GPS
module. The NEQ6 driver board is mounted on slightly larger studs and protrudes a little further into the housing
than before, so the original connectors etc could be left intact. The NEQ6 housing appears to have plenty space
to allow for this.

A PCB was made that plugs onto the Pi4 GPIO connector. This extension board hosts a small 5V DC-DC buck
converter to supply the Pi4 from the external 12V. It also hosts the new Ublox Neo8 GPS receiver and the level
shifters for the NEQ6 serial interface. The GPS receiver is powered directly from the Pi4 3V3 voltage.

The GPS antenna module has been built into a plug that replaces the cap for the polar alignment scope. You can
still take this antenna plug out allowing polar alignment of the mount.

All plastic parts are 3D printed in PETG and PLA.

6

Pi4 serial interface usage:

To connect the GPS receiver and the NEQ6 control interface, two serial interfaces on the RPi IO connector are
used. The SW adaptations are described further down, but the pin usage is described here.

The GPS receiver is a UBlox (NEO-8M), providing 3V3 UART and PPS interfaces. These can be directly connected
to a UART of the RPi.

The GPIO 14 and 15 are monitored by U-Boot (as of Ubuntu 20.04) to check for interrupting key presses, and
should preferably not be used for peripherals. Either the U-Boot environment must be changed for this, which
requires recompiling or actually halting boot and setting the variables, or the port is simply left alone. An
alternative is to use UART2 on pins 27 and 28.

The PPS is connected to a General Purpose IO on pin12 (GPIO18). This can also be left out if subsecond accuracy
is not needed.

The UART5 is used to directly connect the NEQ6 control interface inside the NEQ6 motor housing (top middle).

• 3V3 out: pin 1 → to GPS and level shifters

• Vcc in: pin 2, 4 → from DC-DC converter

• GND: pin 6, 14, 30, 34 → common ground

• GP18: pin 12 (GPIO 18) → to GPS PPS

• Tx2: pin 27 (GPIO 0) → to GPS RxD

• Rx2: pin 28 (GPIO 1) → to GPS TxD

• Tx5: pin 32 (GPIO 12) → to NEQ6 RxD (via level shifter)

• Rx5: pin 33 (GPIO 13) → to NEQ6 TxD (via level shifter)

In case an external INDI Box is used, this serial interface needs to be connected to a RPi USB outlet by means of a
converter, such as CP2102 or FTDI (top right). Take care of voltage levels when interfacing the GPIO pins, the
NEQ6 interface is TTL (5V) and the RPi is LVTTL (3V3). When connecting different digital signal levels, a level-
converter is needed for each lead, as for example in above image (bottom right).

7

Rpi4 pin and GPIO overview:

The Raspberry Pi has several alternative ways to map functions onto the 40 pin GPIO header:

To connect the GPS receiver for example, the alternate mapping of TX2/RX2 is used (to pins 27/28). To enable
another UART interface, for example TX5/RX5 can be mapped to pins 32/33.

8

The way Raspberry Pi accomplishes correct pin mappings, is by activating predefined Device Tree overlays from
usercfg.txt. For the implemented configuration on the RPi4 with Ubuntu 22.04 LTS:

Name: disable-bt

Info: Disable onboard Bluetooth on Pi 3B, 3B+, 3A+, 4B and Zero W,

 restoring UART0/ttyAMA0 over GPIOs 14 & 15.

 N.B. To disable the systemd service that initialises the modem so it

 doesn't use the UART, use 'sudo systemctl disable hciuart'.

Load: dtoverlay=disable-bt

Params: <None>

Name: pps-gpio

Info: Configures the pps-gpio (pulse-per-second time signal via GPIO).

Load: dtoverlay=pps-gpio,<param>=<val>

Params: gpiopin Input GPIO (default "18")

 assert_falling_edge When present, assert is indicated by a falling

 edge, rather than by a rising edge

 (default off)

 capture_clear Generate clear events on the trailing edge

 (default off)

Name: uart2

Info: Enable uart 2 on GPIOs 0-3. BCM2711 only.

Load: dtoverlay=uart2,<param>

Params: ctsrts Enable CTS/RTS on GPIOs 2-3 (default off)

Name: uart5

Info: Enable uart 5 on GPIOs 12-15. BCM2711 only.

Load: dtoverlay=uart5,<param>

Params: ctsrts Enable CTS/RTS on GPIOs 14-15 (default off)

See further below in the section addressing the Extensions.

9

DSLR Power:

For powering the Canon 450D directly instead of a battery (which will run empty), I found a cheap plastic
adapter on the web. This is nothing more than a battery shaped enclosure that just contains a pair of elco’s,
which should be powered from an external net adapter.

Since I wanted to connect this directly to the 12V outlet of the INDI box, instead I pried the adapter open and
used the empty space to put in a cheap tiny buck converter. The voltage setting potentiometer did not work, and
was replaced with a suitable fixed resistor, to yield a 7.6V output voltage. I re-used one of the elco’s and added a
100nF capacitor for further filtering purposes.

Game controller / Joystick:

For corrections and scanning the sky a gamepad can be used as a joystick. This could be a Super Nintendo SNES
controller with a USB interface:

The version I had broke down, so I decided to build a more robust one based on an Arduino Micro and a handful
of buttons. You can use any other, as long as it is USB interface and recognized by Ubuntu.

10

Software configuration

The software setup procedure is chopped-up in several parts, that can be selected independently for installation.
This article is more or less a log of how I did it, based on what I collected from the web and the INDI forum: see
the links at the end of this article. Attributes in yellow background, used in text or code examples should be
customized to your own situation.

The following steps will be followed:

1. Install Ubuntu on the RPi,
2. Setup the networking,
3. Install and configure VNC for virtual desktop access to the Rpi, including MATE desktop,
4. Install the GPS and Time drivers, and add-ons to support the HW configurations
5. Install applications: EKOS/KStars/INDI and drivers, Astrometry, PHD2

1 Ubuntu installation

SD-card preparation

The easiest way to prepare the SDXC card: use Raspbery Pi Imager to download and format/write your card in
one go. Select the Pi4, Ubuntu Desktop 22.04.4 LTS (64 bit) and the micro SDXC card plugged into your PC. I use
a very fast 64GB one, with the intention to speed up local image handling.

Configuration

The files on the readable part of the SD card (such as config.txt, usercfg.txt, syscfg.txt) can be

changed already now, but better at a later stage. After the preparation of Ubuntu they can be found in the
directory /boot/firmware/.

Plug in LAN, display, mouse and keyboard, then boot and let the process finish, while providing the parameters
when asked for. Change the default user / password, set autologin upon first boot. Make sure the RPi can reach
the internet through your home LAN, during startup. The process takes a while, after a reboot a popup will
appear asking to install updates: seems like a good idea. Reboot after updating.

Still some more updating is required:

sudo apt update

sudo apt -y upgrade

11

2 Networking

The intended network topology allows for stand-alone operation in the field, but it can also be hooked up to the
wired home LAN network. For this reason, the WiFi interface will be set up as an access point while upstream
traffic is routed to the Ethernet interface. The Ethernet interface address is static, matching the home LAN. In
case the Ethernet is not connected, the INDI box operates in stand-alone mode and there will be no internet
access. The virtual desktop device (Workstation) normally connects through the WiFi AP, and when the INDI box
Ethernet is connected to a host LAN, it can also reach the internet through the INDI box router. Alternatively, the
Ethernet interface can be used to connect the virtual desktop device via the home LAN.

Example Network Layout

Basic network settings:

In Ubuntu 22.04, netplan and NetworkManager are actually working quite well, so setting up the network is very
easy now:

• Start with setting up the hotspot, through Settings → Wi-Fi and clicking the three dots button in the
title bar.

• The ethernet IP address can be set to static in Settings → Network and clicking the cogwheel in the
wired box. Fill in manual address (192.168.1.123), netmask (255.255.255.0) and gateway

address (192.168.1.1).

A route from the hotspot to the wired network is made automatically.

If the hotspot disappears for some reason, another can be installed by calling the NetworkManager CLI:

nmcli dev wifi hotspot ifname wlan0 ssid test password "password"

The configuration of the hotspot is in /etc/NetworkManager/system-connections.

Make sure that in the Hotspot file autoconnect=true.

12

4 Virtual desktop

Desktop light

Ubuntu uses Gnome as desktop, which is relatively heavy. Therefore this will be replaced by MATE and lightdm
to start with. This can be done from the command line in a terminal window:

sudo apt -y install mate-desktop-environment lightdm

When a command complains about a lock, just reboot. The MATE install will take a while, when asked during
MATE installation select lightdm as display manager.

Then reboot and login through the lightdm popup, after first selecting MATE as desktop (click round icon).

Then configure the desktop environment to your liking. While doing this, it is best to disable the lockscreen
(Control Center → Power Management) and to make sure that autologin is enabled for the user account.

Create /etc/lightdm/lightdm.conf.d/12-autologin.conf, if it doesn't exist. Add the username

in this file:

[SeatDefaults]

autologin-user=ubuntu

VNC Server

At this moment the RPi board is running Ubuntu, has a light weight Mate desktop environment, provides a
WLAN access point and also allows access to the internet. We now need to set up a remote GUI towards the
workstation PC. For this purpose, the lightweight VNC server x11vnc is used:

sudo apt install x11vnc -y

Create a startup file ~/.vnc/passwd, containing:

yourpassword

Configure VNC with a password:

x11vnc -storepasswd

Create a startup file ~/.vnc/startvnc.sh, containing:

x11vnc -usepw -shared -display :0 -geometry 1280x768 -forever

xrandr --fb 1280x768

Make it executable:

chmod 755 ~/.vnc/startvnc.sh

In the MATE GUI use Preferences → Startup Applications to add the script to auto startup, using

the full pathname and maybe 5 sec delay. Together with the autologin it makes sure VNC environment is set up
and starts auomatically.

Then update /boot/firmware/config.txt to force a desktop even when no screen is attached, and set

the proper display parameters:

13

hdmi_force_hotplug=1

hdmi_group=2

hdmi_mode=22

Thess are working settings for a standard 1280x768 display, but you may need to experiment with video modes.

Also the use of CM4 connector to connect any USB devices is not needed, so comment out:

#dtoverlay=dwc2,dr_mode=host

Finally, comment out the line loading the MKS overlay, otherwise VNC is very slow:

#dtoverlay=vc4-kms-v3d

Note: The RPi must have autologin enabled for the user, otherwise there will be no desktop available for VNC to
connect to when in headless mode.

Windows VNC client:

On a workstation you can install any VNC client, but I have used RealVNC successfully in the past. With Ubuntu
20.04 and MATE desktop, Qt applications tended to get corrupted graphics except with RealVNC viewer, so
that’s what I use now. From Android I have used RealVNC Viewer as well. All you need to do is fill in the RPi IP
address (WLAN side, ex: 192.168.3.1) without any port.

A working connection will give something like:

RPi 4 and Ubuntu (20.04) + MATE desktop seen remotely in RealVNC

From here everything works on GUI basis, as if connected locally with a display and keyboard/mouse.

14

3 Extensions
Some extensions of the installation are needed to connect to the specific hardware and to provide some of the
necessary services.

Kernel configuration

During boot the file config.txt is executed, and this file as supplied with the Ubuntu 20.04 image includes a

number of other files, notably syscfg.txt and usercfg.txt. In 22.04 this is no longer the case and all

modifications are made directly in config.txt.

We need to make sure that UART2 and UART5 can be used as UARTs for GPS input and NEQ6 control
respectively. This means the right overlays must be loaded and any other use of the UARTs must be disabled.
Moreover, we need a GPIO pin to be configured as PPS input.

So edit config.txt as follows:

To enable a serial console at boot time, after loading the kernel (kernel=…), add line:

enable_uart=1

At the end of the file, load the overlays to configure the GPIO usage:

dtoverlay=disable_bt

dtoverlay=pps-gpio,gpiopin=18

dtoverlay=uart2

dtoverlay=uart5

The pps kernel module needs to be loaded during boot, add this line to /etc/modules:

pps-gpio

After a reboot UART2 and UART5 will be visible as a new /dev/ttyAMA1 and /dev/ttyAMA2 device

respectively. Also, there is now a /dev/pps0 device. The permissions should be 660 and the group must be

dialout. If not, use chgrp and chmod to change these, so e.g.:

sudo chgrp dialout /dev/pps0

sudo chmod 660 /dev/pps0

Check that the commandline file cmdline.txt does not link the console to ttyAMA1 or ttyAMA2, but for

example:

console=serial0

Finally, it is best to also check in /dev whether any symbolic links are made to these devices, and if so, remove

them. Typically serial0 is linked to ttyAMA0.

Connecting the GPS receiver

If not already the case (check with groups), the user must be added to the dialout group to obtain access to

serial ports:

sudo adduser ubuntu dialout

This might require a reboot to take effect.

15

Since the system will run without internet connection, a separate source for time and position needs to be used
(or you would have to set these manually). A U-Blox Neo-8M GPS module is connected to the HW UART2 for this
purpose. The use of the PPS signal can be enabled if the GPS module generates this. This can be done by
activating overlays that have already been configured.

The /dev/pps0 as well as the /dev/ttyAMA1 devices must be available and free to use. The ttyAMA1

device is connected to HW UART2, and available on pins 27 and 28 (GPIO 0 and 1). The pps0 device is available

on pin 12 (GPIO 18). The GPS receiver must be properly connected to these pins (see HW section).

To change tty settings use the stty command, for example to switch off echo or set speed (see man stty for

options):

sudo stty -F /dev/ttyAMA1 9600 -echo

The working of the GPS receiver can now be checked, assuming it is connected, by typing:

cat </dev/ttyAMA1

The output of the GPS receiver will scroll over the screen when all is in order.

Now gpsd needs to be set up to serve as time/position reference. First install gpsd and clients:

sudo apt install gpsd gpsd-clients

Then, edit the daemon file /etc/default/gpsd to contain the following:

START_DAEMON="true"

USBAUTO="false"

DEVICES="/dev/ttyAMA1 /dev/pps0"

GPSD_OPTIONS="-n"

GPSD_SOCKET="/var/run/gpsd.sock"

After a reboot, when cgps or gpsmon is used, the screen should show status info and running messages from

the GPS. Depending on GPS device and location it might take a while to establish first fix.

Note: When the gpsd service is not started (check with service gpsd status), it may be done manually in

the user home-directory file: .profile. Add towards the end:

sudo stty -F /dev/ttyAMA1 9600 -echo

sudo stty -F /dev/ttyAMA2 9600 -echo

To test gpsd (this will not auto start at reboot, see further below):

sudo service gpsd start

See https://gpsd.gitlab.io/gpsd/troubleshooting.html for troubleshooting gpsd.

Time server

When the GPS receiver works, a time server must be installed that can synchronize system time with gpsd. Use

chrony for this, which is a newer NTP server implementation than ntpd.

sudo apt -y install chrony

https://gpsd.gitlab.io/gpsd/troubleshooting.html

16

Change the configuration file /etc/chrony/chrony.conf to use local time reference (i.e. GPS). Comment

all references to internet NTP servers, like for example:

#pool 2.debian.pool.ntp.org offline iburst

Uncomment or add the line defining a local reference:

local stratum 10

Add lines to indicate the gpsd output as reference:

set larger delay to allow the NMEA source to overlap with

the other sources and avoid the falseticker status

refclock SHM 0 refid GPS precision 1e-1 offset 0.9999 delay 0.2

refclock SOCK /var/run/chrony.ttyAMA1.sock refid PPS

Change this line to force time update when the difference is more than 1sec:

makestep 1 -1

Save the file and make gpsd service to run automatically at boot time:

sudo systemctl enable gpsd.service

Now reboot the RPi. Check whether the services are running:

service --status-all

There should be a (+) indication next to chronyd and gpsd.

Use gpsmon or cgps to see whether the gpsd has a fix and gets PPS. Then use chronyc to see whether

chronyd has the right time. If everything runs as it should, the system clock should be set to the right value.

Setting your timezone is done with datetimectl:

timedatectl list-timezones

sudo timedatectl set-timezone Europe/Amsterdam

FTP server

To enable file exchange (e.g. photo's) it is helpful to have an FTP server running. This can be enabled by installing
Very Secure FTP daemon (vsftpd) on the RPi:

sudo apt install vsftpd

After rebooting the FTP daemon runs and can be accessed from the laptop with for example the FileZilla client.

SSH server

Install OpenSSH server:

sudo apt install -y openssh-server

17

5 Applications

KStars/EKOS/INDI:

To install the Kstars/EKOS/INDI suite on the RPi, make sure it is connected to the internet and from a CLI (SSH or
terminal) enter:

sudo apt-add-repository -y ppa:mutlaqja/ppa

sudo apt update

sudo apt -y install indi-full kstars-bleeding

Note:

Sometimes KStars or indilib are not completely installed, then it can be done again by executing once more:

sudo apt update

sudo apt upgrade indi-full kstars-bleeding

Configuration hints:

Use the Ubuntu gpsd service as direct source of location and time for EKOS, if not installed already:

sudo apt install -y indi-gpsd

In EKOS, select the gpsd device under Aux → Others

The mount to be used is SkyWatcher → EQMod. To get the mount working, the right port has to be chosen to
connect. The device ttyAMA2 is connected to HW UART5, and available on pins 32 and 33 (GPIO12 and 13).

This serial port device needs to be selected in the EQMod Mount / Connection tab in the Kstars control panel.

Astrometry:

The Astrometry plate solver can be used to accurately align the telescope in a very easy way. After rough polar
alignment, go to a known object. The plate solver takes a DLSR image and tries to match it with stored and
indexed images. When successful, the fix can be used to sync the mount.

Which files you actually need depends on the telescope resolution; the lower numbers have smaller tiles:

• astrometry-data-2mass-00 2’ – 2.8’

• astrometry-data-2mass-01 2.8’ – 4’

• astrometry-data-2mass-02 4’ – 5.6’

• astrometry-data-2mass-03 5.6’ – 8’

• astrometry-data-2mass-04 8’ – 11’

• astrometry-data-2mass-05 11’ – 16’

• astrometry-data-2mass-06 16’ – 22’

• astrometry-data-2mass-07 22’ – 30’

• astrometry-data-2mass-08-19 30’ – 2000’

The file astrometry-data-2mass will load them all, but this is a total of many GB.

18

Per package installation:

sudo apt -y install astrometry-data-tycho2

sudo apt -y install astrometry-data-2mass-08-19

sudo apt -y install astrometry-data-2mass-07

sudo apt -y install astrometry-data-2mass-06

sudo apt -y install astrometry-data-2mass-05

sudo apt -y install astrometry-data-2mass-04

sudo apt -y install astrometry-data-2mass-03

sudo apt -y install astrometry-data-2mass-02

Alternatively, download the debian packages from http://data.astrometry.net/debian , FTP and install with:

sudo apt -y install astrometry-data-*.deb

To be able to use this, also the plate solving software itself must be installed, this may already have been done
with the KStars/indi package:

sudo apt -y install astrometry.net

PHD2:

PHD2 is maintained by http://openphdguiding.org/ but only for Windows and MacOS. The Linux

variants are maintained by Patrick Chevally on his launchpad:

https://launchpad.net/~pch/+archive/ubuntu/phd2

To install, enter the following:

sudo add-apt-repository ppa:pch/phd2

sudo apt update

sudo apt -y install phd2

SkyChart

Find the website tyo get the instructions for installation:

https://www.ap-i.net/skychart/en/documentation/installation_on_linux_ubuntu

CCDCiel, ASTAP, …

To Be Completed

Other settings

For the game controller a driver is already available in the Ubuntu installation, for testing the controller the
package jstest can be used:

sudo apt -y install jstest-gtk

This test package shows the numbers for the different buttons, to which KStars will refer.

http://data.astrometry.net/debian
http://openphdguiding.org/
https://www.ap-i.net/skychart/en/documentation/installation_on_linux_ubuntu

19

Astroberry

As an open-source alternative to e.g. Stellarmate or ASIAir, which basically are also RPi based devices, Astroberry
server provides a complete SD card image that can easily be installed in a RPi 4. Unfortunately it is not updated
anymore, so new application SW lacks the required support.

20

Some References

The INDI tutorials (“Painless remote control with Ekos/INDI”)

http://indilib.org/support/tutorials.html

INDI Forum, (search for Pi 4)

https://www.indilib.org/forum/index.html

Ubuntu 22.04 for the RPi4 (64 bit):

https://ubuntu.com/download/raspberry-pi

Terminal emulator for SSH, PuTTY:

http://www.putty.org/

Writing a disk image to SD Card, Win32DiskImager:

https://sourceforge.net/projects/win32diskimager/

PHD2 (Ubuntu/INDI):

https://launchpad.net/~pch/+archive/ubuntu/phd2

https://launchpad.net/~pch/+archive/ubuntu/phd2

