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1 Introduction 
These days, any off-the-shelf telescope with some self-esteem has a goto controller. Any 

Amateur Telescope Maker with as much self esteem would like to build such a controller 

himself. To realize this, he can base his project on a worked-out possibility available on the 
web. One of these systems is the wideely used design of Mel Bartels, commercialized by 

Dan Gray of Sidereal Technology. A somewhat less used alternative is the system designed 

by Martin Cibulski, which has also been built by some SSA members. 

The two designs are quite different. The Bartels system consists of a relatively simple driver 

circuit and relies on PC software for controller algorithms. In contrast, the Cibulski system is 

self-contained, and is more like the systems integrated in the off the shelf goto scopes.  

The Bartels design has the advantage that it is fairly simple to build, and anybody can 

install PC software. The main disadvantage is that you always need a PC, and some big 

battery to supply it in the field. The Cibulski system is a bit more complicated, it is based on 

an Atmel microcontroller which needs to be programmed, and has a more complicated 

circuit. It also requires a proprietary hand paddle for control. Main advantage is of course 

that no additional equipment is required, and that it is quite low in power consumption. 

The goal I set when starting the design that follows, was to have a more or less self 

contained system that could be controlled by using a de-facto standard protocol like use don 

the Meade LX-200. This opens up the possibility to have the telescope controlled from a 

planetarium program, running on a PC or a PDA (more convenient for in-the-field use). On 

the business side it is designed to be able to control a variety of power drivers. 

The following is written as an analysis of the background math but also to capture the whole 

reasoning behind the design. Maybe it is of use to someone attempting a similar project.  

 

1.1 System Overview 

As can be seen in the overview shown below, the system consists of three parts: a 

controller and two current drivers. The controller takes care of user interface, coordinate 

transformations and sending out pulses to advance the steppers. The current drivers 

convert the step pulses into the corresponding current to drive the actual stepper motors. 
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System Overview 

 

The goal of separating controller and driver is to decouple the implementation of the 

controller form the actual AC needs of the stepper motors. The driver can be optimized for 
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the steppers selected to move the telescope. Stepper drivers which have a step-pulse 

control interface are commercially available from various sources.  

The controller has two serial interfaces. The first runs over a Bluetooth link, using the Serial 

Port Profile (SPP). This interface is used to link to external applications by means of the LX-
200 control protocol. The second serial interface is wire based, and can be used for 

autoguider or possibly a hand paddle.  

The controller is powered by for example a car battery. The current drivers will have their 

own supply which depends on the selected units (probably also car battery). 

 

1.2 The Hardware 

The controller is built around a Microchip dsPIC 30F4011 digital signal controller. This 

controller has built-in DSP functionality, such as a MAC (Multiply and ACcumulate). Such a 

MAC provides a single cycle fixed-point mutiply instruction, which is good for coordinate 

transformations. 
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Block diagram 

 

The Bluetooth interface is implemented with an RN41 module by Roving Networks. This 

module provides a serial port to the PIC, and requires only a few simple controls. The wired 
serial interface is implemented with a MAX232 compatible level shifter, and the interface 

towards the current drivers is using a 74244 TTL transceiver. 

 

 

The plan is to use a pair of SparkFun ‘Easy Driver’ 

modules, which are based on an Allegro A3967 

driver chip. This chip can drive steppers between 
7..30V with a max current of 750mA. An alternative 

for more demanding stepper motors could be an 

M415C, obtainable from www.stappenmotor.nl. 

Another possibility is to roll your own, for example 

base don the new L6470 by ST-Microelectronics. 
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1.3 The Software 

The 30F4011 DSC contains the software that basically converts LX-200 commands into 

pulses for the steppers. This sounds simpler than it is in reality: the command “go to this 

RA-Dec coordinate” requires these equatorial coordinates to be transformed into telescope 

based Hor-Ele reference system, which continuously change with time. Then these target 

Hor-Ele coordinates need to be compared with the actual values, and a software control 

loop is running to close the gap. The control loop finally pulses the steppers to drive the 

telescope to the required direction. 

Eventually the controller will reach equilibrium and end up in tracking mode. In this mode 

only the movement caused by the rotation of the earth has to be compensated in order to 

remain locked on the set target RA-Dec coordinate. This tracking mode can be supported by 

an autoguider, which will correct the direction by directly directly adding or subtracting 

steps from the current Hor-Ele setting. Every now and then this should also be processed in 

the coordinate transformation algorithm. 

The transfomation uses a set of parameters that has to be initialized in a calibration 

procedure. This procedure couples known star positions to measured stepper settings (or 

Hor-Ele coordinates) to derive the parameters. Two fixes are enough, but more is better. 

Other parameters are telescope related, such as number of steps per revolution and max 

acceleration, and these can be configured once and stored persistently. 

The external controlling application can be any planetarium program that speaks LX-200 

commands. Examples of such programs are “Cartes de Ciel” freeware, or “TheSky” by 

Software Bisque. Alternatively a simple PDA or PC application can be made to have some 

kind of hand paddle function. 
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2 Algorithms 
This section provides more detailed mathematical background of the algorithms used in the 

telescope controller. I have collected this background material in order to be able to write  

the controller software.  

 

2.1 Dynamic range 

There is an enormous difference in speed between just tracking an object and slewing to an 

other object as a consequence of a GoTo command. While tracking only the rotation of the 
earth has to be compensated, which goes at a maximum of 15”/sec (from west to east).  

For slewing a much higher speed is required so it doesn’t take all night to for example 

sweep from Capella to Albireo. A more realistic slewing speed would be in the order of 1 or 

2 º/sec.  

The angular resolution of the scope drive should be below the resolving power of the 

telescope, or maybe more realistically, of the average seeing. A good value is about 0.2” 

and this value will determine the angular motion associated with a single (micro)step of the 

motor.  

Taking these values into account, the stepping frequency will range from about 30 Hz for 

tracking to about 20kHz for slewing. The resulting dynamic range required to achieve these  

speed values is a factor 1000. 

The maximum stepping speed a motor can handle without skipping steps, differs between 

the various types but also depends on how the motor is mechanically loaded. Practical 
values are around 1000 full steps per second, so with a factor 16 microstepping about 

16kHz will be the maximum achievable angular speed. Microstepping  in itself also makes 

motor operation more reliable, and might even allow higher frquencies. 

 

A calculated example: 

Stepper resolution: 1.8º (200 step/rev.) 

Microsteps: 16 

Telescope resolutie: 0.2” 

Required reduction: (3600 * 1.8) / (16 * 0.2) = 2025 

 

When instead 64 microsteps are used, the required mechanical reduction is only 506. There 

is however a downside of cranking up the number of microsteps: the accuracy of a single 

step will suffer from non-linearity inherent to the motor design, which will result in periodic 

error. This non-linearity can to certain extent be compensated in software, but it is better to 

use a current driver that is capable of correcting the driving current to compensate for the 

non-linearity. This will probably require some calibration…  

 

2.2 Coordinate systems 

The coordinates of a celestial body are given in Right-Ascension and Declination. These 

coordinates fix a certain point on the celestial globe, and for remote stars (their yearly 

parallax is zero) the RA-Dec coordinates are constant. This system is called “Equatorial”, 

since the line of zero Declination is defined by the projection of the earth equator on the 

celestial sphere. In other words, it is referenced on the Earth itself.  

The Right Ascension is the angle along the celestial equator measured from the crossing of 
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equator and ecliptic. This is the RA the Sun has at the beginning of spring, the vernal 

equinox. Declination is the angle measured perpendicular to the celestial equator. 

 
 

 

Equatorial coordinate system 

 

In reality we are located somewher on the Earth, which rotates about its axis once every 24 

hours. Furthermore, the Earth revolves around the Sun in about 365.25 days. This yearly 
revolution around the Sun silently adds another Earth rotation to the number of days, when 

not the Sun but some remote star is taken as reference. The result of this is that we see the 

yearly motion of constellations when we watch the heavens the same time every evening. 

 

 
 

 

Horizontal coordinate system 

 

So, if we want to refer e certain celestial object to our viewing location, we need to know 

exactly where we are, and what time and date it is. The coordinate system that is centered 

on the observers’ location is called Horizontal (or Alt-Azimuth). This system is much easier 
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to comprehend than the Equatorial system: the angles that are similar to the equatorial RA 

and Dec are called Azimuth (Az, angle along the horizon) and Altitude (Alt, vertical angle 

perpendicular to the horizon) respectively. 

So a solar day is defined by successive culminations of the Sun. If we reference the Earth 
rotation to the celestial sphere instead of the Sun, we call it a Sidereal (star). A sidereal day 

is the time between culminations of a  fixed celestial object. A sidereal day is somewhat 

shorter than a solar day, because the daily bit of Earth orbital motion (i.e. 360º/365.25) 

must be subtracted from a solar day to obtain a sidereal rotation. The ratio between solar 

and sidereal time is approximately 1.002737909350795, and hence a sidereal day lasts only 

23:56:04. 

This difference in length of day causes the sky to apparently move westward through the 

year. 

A third coordinate system that should be considered is that centered on the telescope. This 

resembles the Horizontal system, but it takes into account that the telescope may not be 

level and may also have some mechanical alignment errors. The transformations that will be 

used in the controller are between sky based Equatorial (RA-Dec) and the telescope based 

Horizontal-Elevation system (Hor-Ele). 

 

2.3 Transformations 

The relation between Equatorial and Horizontal coordinate systems is analytic, and has as 
parameters the observers’ latitude and the local sidereal time (LST). The LST is directly 

derived from the Greenwich Mean Sidereal Time (GMST) by adding an offset determined by 

the observers’ longitude. GMST can be directly derived from UTC. 

The transformation ƒ between the coordinate systems can be given as: 

( ) ( )DecRAfAltAz LSTLAT ,
=  

And the reverse: 

( ) ( )AltAzfDecRA LSTLAT

1

,

−=  

In practise, we’re not usually not interested in our real LST and Latitude. Assuming that the 

telescope has no errors, misalignment to the Horizontal coordinate system could be ignored 

by defining ‘apparent LST’ and ‘apparent Latitude’. Tilt in east-west direction is 

compensated by a an offset LST, while tilt in north-south direction is compensated by an 

offset Latitude.  

Disadvantages of this simplification are a less accurate correction of refraction near the 

horizon, and also compensation of location-dependent parallax effect noticable when 

observing relatively nearby objects (satellites, moon, planets). 

A more precise method of making the transformation is based on transformation matrices. 

In this method telescope mount construction errors can be also be accounted for. The 

method is very well described by Toshimi Taki on his website, and is for example used in 

the software of Mel Bartels’ system. A disadvantage of this method is the increased 

complexity that requires quite some processing power. For a microcontroller it may be too 

demanding. 

In practical systems a combination of both methods can be useful. If the system is started 

up, pointing at approximately Alt=0 and Az=0 and knowing LST and Latitude, a first order 

approximation can be used to more easily find the calibration stars. 
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2.3.1 Horizontal to Equatorial and reverse 

First define a set of parameters: 

δ: Declination (-90º .. 90º) 

α : Right Ascension (0 .. 24h) 

h : Altitude above horizon (0 .. 90º) 

A : Azimuth eastward from north (0 .. 360º) 

µ : Hour angle (0 .. 24h) 

ϕ : Local Latitude (-90º .. 90º) 

Ψ :  Local Longitude (-180º .. 180º, East of Greenwich is positive) 

LST: Local Siderel Time 

GMST: Greenwich Mean Sidereal Time 

DUTC: Decimal days since 1 Jan 2000, 12:00 (UTC) 

 

The following formulae define the transformations: 

( ) ( )
( ) ( ) ( ) ( ) ( )

24mod
cossinsincoscos

cossin
arctan

15

1


















∗−∗∗

∗
∗=

ϕϕ
µ

hhA

hA
 

( ) ( ) ( ) ( ) ( )( )ϕϕδ coscoscossinsinarcsin ∗∗+∗= hAh  

 

Right Ascension and Hour angle have a simple relation: 

µα −= LST  

 

Note that the Azimuthal coordinate system has a fixed relation with the Hour angle, 
whereas the relation with Right Ascention changes with time. 

The Local Sidereal Time (LST) can be calculated as follows: 

24mod
15





 += ψ
GMSTLST  

The Greenwich Mean Sidereal Time is accurately related to UTC as follows: 

( )UTCDGMST ∗+= 244190824.0657098 5818.6973745  

 

Calibration of the controller software now boils down to relating step counts and Alt-Az 

coordinates. To make this more linear, count values of 0 could be shifted to align with 

coordinate values of 0. 

 

For the reverse transformations similar formulae are derived: 

( ) ( ) ( ) ( ) ( )( )ϕδϕδµ cossincoscos15cosarcsin ∗−∗∗∗=h  

( ) ( ) ( )
( ) ( ) 









∗

−
=

ϕ

ϕδ

coscos

sin*sinsin
arccos

h

h
x  

( ) xALST −=⇒≥− 3600α                   ( ) xALST =⇒<− 0α  
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2.3.2 The matrix method 

The matrix method can be used for any linear transformation, of which Alt-Az to RA-Dec as 

described in teh previous section is just a special case. To calibrate the transformation 

matrix, at least two reference points are needed, i.e. two sets of measurements relating a 

reference star to telescope coordinates. 

The matrix works between cartesian or orthogonal spaces. Because both celestial and 

telescope coordinates are spherical, these first have to be converted to so-called direction 

vectors. These are 3 dimensional vectors with unit length, marking the direction of a star or 

the telescope. 

First define some variables: 

δ: Declination (-90º .. +90º) 

α : Right Ascension (0 .. 24h) 

µ : Hour angle (0 .. 24h) 

ε: Elevation (0 .. 90º) 

θ: Horizon angle (0 .. 360º, eastward from south) 

k: 1.002737908, Conversion factor from sidereal to solar time 

t, t0: time and reference time (e.g. start of session) 

Again, Right Ascension and Hour angle are related by: µα −= LST  

 

 

x (south equator) 
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-15 µ 
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Equatorial and Horizontal direction vectors 

 

The cartesian direction vectors are given by: 

( ) ( )
( ) ( )

( ) 















⋅−⋅

⋅−⋅

=
















δ

µδ

µδ

sin

15sincos

15coscos

z

y

x

     en     

( ) ( )
( ) ( )

( ) 















⋅

⋅

=
















ε

θε

θε

sin

sincos

coscos

n

m

l

 (1a, 1b) 

 

Reverse operation for equatorial coordinates: 









=⋅−

x

y
arctan15 µ    en   ( )zarcsin=δ  (2) 
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Note that the time of observation is a parameter through the hour angle, but instead any 

time reference could be taken. 

 

For telescope coordinates the reverse operation is: 









=

l

m
arctanθ    and   ( )narcsin=ε  (3) 

 

For both arctan() functions, when x (or l ) < 0, a shift to the 2nd or 3rd quadrant must be 

done by means of an 180º rotation 

 

The conversions of direction vectors from one coordinate system to the other are defined by 

the following transformations: 

















⋅=
















z

y

x

T

n

m

l

     and     

















⋅=















−

n

m

l

T

z

y

x
1

 (4a, 4b) 

 

Ideally, the transformation T is described by a rotation matrix. In that case the inverse T-1 

is equal to its transposed. This means that it can be found by mirroring in the tii diagonal, or 

in other words: tij -> tji. In practise the inverse must be determined by full calculation, 

because the transformation is likely not ideal due to misalignment errors. 

 

The matrix T can be deduced from two or three calibration sets, stored as: 

 

Name Time RA Dec Hor Ele 

Star 1 t1 α1 δ1 θ1 ε1 

Star 2 t2 α2 δ2 θ2 ε2 

Star 3 t3 α3 δ3 θ3 ε3 

 

From the three calibration measurements first the 6 direction vectors must be calculated: 

3x for the equatorial and 3x for the telescope system. For each of the three sets the 

transformation should work, and hence the matrix can be deduced: 

















⋅=
















321

321

321

321

321

321

zzz

yyy

xxx

T

nnn

mmm

lll

    and:  

1

321

321

321

321

321

321

−

















⋅
















=

zzz

yyy

xxx

nnn

mmm

lll

T  (5) 

 

The required matrix operations are standard linear algebra... 

 

The link between (x,y,z) and (l,m,n) vectors is the time of observation. The (l,m,n) vectors 

are derived from the step counters in the controller, maximum stepcount equals 360º. 
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In practise, a calibration will go through the following steps: 

• Measure the positions of two or three known stars 

• Calculate direction vectors with (1) 

• Derive transformation matrix with (5) 

• Determine the inverse transformation matrix 

 

Then the matrices can be used to do the actual transformations: 

• Determine the direction vector with (1a) or (1b) 

• Perform the transformation with (4a) or (4b) 

• Determine the resulting coordinates with (3) or (2) 
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2.4 Simulation 

In order to try out the transformation algorithms a PC application was made to simulate the 

behaviour of an LX-200. This simulator is used in combination with ‘TheSky PE’ running on a 

PDA (HTC P3300, Windoze Mobile 5). The PDA application sends LX-200 commands to the 

simulator, which should react as a real LX-200 compatible telescope. The behaviour that is 

reverse-engineered with this simulator will finally be used to implement the software in the 

controller. 

 

One of the first things that is noted, is that ‘TheSky PE’ continuously requests the current 

RA and Dec values of the telescope. The returned values are made visible as a cross-hair on 

the PDA screen. As long as the telescope is tracking, these coordinates will not change. 

When the simulated telescope is moved to another coordinate, you can also see the 

crosshair move over the sky background. 

The simulator always starts on the equator (Dec = 0) and the local meridian (RA = LST). 
Using the simulators N, E, S and W buttons, the telescope direction can be changed. The 

speed that is used is determined by pressing one of the Slew, Find, Center and Guide 

buttons. Speeds are in accordance with LX-200, respectively 2º/s , 1º/s , 8’/s  and 15”/s. 

The actual direction of the simulated telescope does not have to be what is reported to 

TheSky. To calibrate, the telescope can be moved using the direction buttons to simulate 

pointing to a known star. When this star is selected in TheSky, and the ‘sync’ command is 
selected, the right RA/Dec coordinates are passed to the simulator, which can use these to 

do a calibration (or at least store a measurement for later calibration).  

 

The idea is to implement and test all algorithms in the simulator, before actual 

implementation in the controller. This allows for much easier debugging.  

 

 

LX-200 Simulation
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The following interactions were linked to various operations in TheSky-PE: 

 

Menu->Telescope->Initialize 

Command Reply Comment 

:Sg 354*50# 1 Set site longitude (ex: 5*9.1' east) 

:St +52*13# 1 Set site latitude (ex: 52*13' north) 

:SL 22:08:05# 1 Set local time 

:SG -01# 1 Set hours to UTC 

:SC 02/28/10# 1Updating## Set local date (ex. feb 28, 2010), 30sec for update 

 

Point on chart->Sync button 

Command Reply Comment 

:Sr 11:14:14# 1 Set RA of object 

:Sd -00*55:43# 1 Set Dec of object 

:CM# Object# Synchronize telescope with target object 

 

Arrow key or equivalent. (rate depends on Menu->Telescope->Set Slew Rate) 

Command Reply Comment 

:RS# 

or :RM# 

or :RC# 

or :RG# 

 Set slew rate to Max 

or Set Slew rate to Find 

or Set Slew rate to Centering 

or Set Slew rate to Guiding 

:Mn# 

or :Me# 

or :Ms# 

or :Mw# 

 Move North (up) 

or Move East (left) 

or Move South (down) 

or Move West (right) 

:Q# 

:Q# 

 Stop slewing 

STOP! (just in case…) 

 

Select object (or point on chart)->Slew button 

Command Reply Comment 

:Sr 18:21:53# 1 Set RA of object 

:Sd -02*53:30# 1 Set Dec of object 

:MS# 0 

or 1 

or 2 

Slew to target object OK 

 Object too low (below horizon) 

 Object too high to reach 

 

Menu->Telescope->Abort slew 

Command Reply Comment 

:Q# 

:Q# 

:Q# 

:Q# 

 Stop slewing 

Stop! (in case you’ve missed it) 

STOP! (just in case…) 

S T O P ! (to be absolutely sure) 
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3 The prototype 
 

A prototype of the controller has been built according to the the plan described in section 1. 

The image below shows this prototype and indicates the interfaces and the PIC DSC. 

 

 

BlueTooth 

RS232 

Stepper 
drivers 

Programmer 

4011 

Power 

 

Controller Prototype 

 

The total cost of this module is about €50, the RN41 Bluetooth module being the cost 

driver. As can be seen, with a little effort it would be possible to squeeze on som more 

components or to shrink the PCB. The final design could also increase the use of SMT for 

passive components. All in all, the current prototype is foremost meant as a platform for 

experimentation and software development. The main challenge will be to squeeze it all in 

the tiny memory, measuring 48kB of Flash and 2kB of RAM. Furthermore, the clock speed is 

quite low, only 40MHz with a non-pipelined instruction rate of 10MHz. 

 

3.1 Controller Software 

The most demanding task for the controller will be the generation of stepper pulses. This 

happens in an interrupt servioce routine (ISR) triggered by a hardware timer. Considering 

the instruction clock of 10MHz and a 10kHz step pulse frequency, there are about 500 

instructions between timer interrupts. The timer interval is 50 µsec (instead of 100) because 

each pulse has a rising and a falling edge. This is not a lot, but luckily the ISR task is very 
simple, counter update a conditional toggle of the pulse bit. 
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Software overview 

 

The software structure is as shown in the above diagram. There are three operational tasks 

that run concurrently, and optionally (not drawn) a fourth monitoring the RS232 guide-port 

for configuration commands or autoguider input. 

Operational tasks: 

• LX200 interpreter: Interprets the LX-200 control protocol over the Bluetooth 

interface to PC or PDA. This task also executes the calibration functions, which are in 

fact initiated by some of the LX-200 commands. It is the least time critical task, so it 

runs at lowest priority. 

• Transform: This task calculates every (sidereal) second what the Target Horizontal 

coordinates on the next tick should be. This calculation relies on the availability of a 

valid transformation matrix. It converts the Target Equatorial coordinate input from 

the LX200 task and the current LST into Target Horizontal coordinate.  

• Speed Control: This task calculates 10 times per second what the stepper speeds 
should be, based on the difference between Actual and Target Horizontal coordinates 

and the current speed. The calculation takes into account the acceleration and speed 

limits. It has a higher priority than the Transform task. 

Finally, the Stepper Control task is implemented as an Interrupt Service Routine (ISR) 

because it has a very strict timing requirement. Since it is an ISR it automatically gets 

higher priority than any regular task. 

 

3.1.1 LX200 parser 

The main function of this task is to maintain the communication link with the controlling PC 

or PDA application. This communication uses the Meade LX-200 commandset, which can be 

considered as a de-facto standard. 

This protocol mainly uses Equatorial coordinates, since this is the frame of reference for 
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most planetarium programs and astronomic starcatalogs. Three coordinates are used, 

indicating the Target and Object from commands and the Actual coordinate for replies. The 

first two are used to direct the telescope to a certain Target direction and to store an Object 

for later referral. The third coordinate is used to report the current Actual direction, which 

can be represented by a crosshair on the planetarium sky map. 

Other parameters that can be set by the protocol are a set of predefined speeds, observing 

site location and time, and celestial coordinates for calibration purposes. 

Communication with the Xform task happens through shared memory locations, as shown in 

the Software overview diagram. 

 

 
 

parse cmd 

execute cmd 

wait for command 

cmd complete: 

 

LX200 task 

 

The LX200 task blocks on incoming data received from the Bluetooth link. When a command 

is complete it is interpreted and executed. For some commands the result is reported back. 

As long as no commands are received, the task is in idle state and uses no processing 

resources. 

An additional function of the LX200 task is to supervise the initialisation and calibration of 

the transformation matrices. This is in fact driven by the commands from the PC or PDA.  

Initially, the controller assumes to be pointing at the south horizon. As soon as it receives 

site location and time information a rough initialisation is done. From this point on, the 

controller can be managed with the planetarium program.  

To achieve better accuracy, the controller also needs to be calibrated. Three synchronisation 

commands are required to be able to do a proper calibration. The sync command in fact 
means that the previously set Equ Object coordinates (in hour angle format) are the 

transformation of the Hor Actual coordinate, and the set is stored as a calibration 

measurement. Three of such measurements are used to derive the transformation matrix. 

 

The various command sequences have been reverse engineered with the simulator, as 

described in section 2.4. 
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The effect of various commands on the processing is summarized in the table below: 

Command Reply Action 

:Sg 354*50# 1 Store site longitude in Lat-Lon 

:St +52*13# 1 Store site latitude in Lat-Lon 

:SL 22:08:05# 1 Store site time in LocTime 

:SG -01# 1 Store offset to UTC in LocTime 

:SC 02/28/10# 1Updating## Store site date in LocTime,  

Calculate LST,  

Initialize xforms, based on defined Horizontal and site 

:Sr 18:21:53# 1 Store object RA in RA-Dec Obj 

:Sd -02*53:30# 1 Store object Dec in RA-Dec Obj 

:MS# 0 Copy RA-Dec Obj to RA-Dec Tar,  

This will start slewing 

:CM# Object# Save calibration set: {RA-Dec Obj, LST, Hor-Ele Act} 

If sufficient data, calibrate xforms 

:RS#, :RM#, 

:RC#, :RG# 

 Set SlewRate to Max, Find, Centering, Guiding 

:Mn#, :Me# 

:Ms#, :Mw# 

 Copy SlewRate to DeltaDec, DeltaRA 

Copy -SlewRate to DeltaDec, DeltaRA 

:Q#  Copy 0 to DeltaDec and DeltaRA 

 

 

3.1.2 Xform 

Each (sidereal) second this task calculates the new Hor-Ele coordinates from the Target RA-

Dec, as they are valid on the next second. Note that the Target may be different from the 

Actual RA-Dec, in which case the telescope is in fact slewing to a new direction. This implies 

that every second a new transformation must be done, using the transformation matrix. 

 

 
 

increment time 

calculate Hor Target 

wait for 1 sec clock 

clock pulse: 

calculate Equ Actual 

 

Xform task 

 

The Xform task also takes care of updating the local solar and sidereal time, and feeds the 

Actual Horizontal coordinate back into the Actual Equatorial. This implies that every time an 

inverse coordinate transformation must be done as well! This step could be skipped 
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however, if the Target and Actual Equatorial coordinates have the same value, since in that 

case the telescope is only tracking the object. 

 

So the Xform task can be in three different modes: 

• ‘tracking’, following the Equ Actual, should be equal to Equ Target  

• ‘moving’, making corrections to the current direction, i.e. Equ Actual  

• ‘slewing’, changing the Equ Actual to Equ Target, as fast as possible 

 

 
 

Equ Target (t) 

Equ Actual (t) 

Xform 

Xform
-1

 Hor Actual 

Hor Target (t+1) 

t 

t 
Speed 
Control 

ISR 
 

Xform task in ‘tracking’ mode 

 

So in ‘tracking’ mode all that needs to be done is convert the Equ Actual (=Equ Target) into 

the Hor Target, one second in the future. This process and all involved variables are shown 

in above diagram. In this mode the inverse transform is optional, since the Equ Actual 

should not change. 

 

 
 

Equ Target (t) 

Equ Actual (t) 

Xform 

Xform
-1

 Hor Actual 

Hor Target (t+1) 

t 

t 
Speed 
Control 

ISR 

∆ Equ 

 

Xform task in ‘moving’ mode 

 

When the Xform task is in ‘moving’ mode, an offset needs to be added to the Equ Actual 

each second. The magnitude of this offset is usually set by an LX-200 command before the 

actual move command is issued.  

Another source of offset is the input from an autoguider. The magnitude in this case is 

probably better configured for the telescope, default guide speed is 15”/sec, but this may 

give too large deviations for photographic use. Alternatively the guide commands could be 

implemented to directly change the SpeedControl task settings. 

An inverse transformation is required, since the Equ Actual is expected to change. 
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Equ Target 

Equ Actual (t) 

Xform 

Xform
-1

 Hor Actual 

Hor Target (t+1) 

t 

t 
Speed 
Control 

ISR 
 

Xform task in ‘tracking’ mode 

 

In ‘slewing’ mode, the telescope needs to be moved from the Equ Actual to the set Equ 

Target with the highest possible speed. The new Hor Target at t+1 is bluntly calculated from 

the Equ Target, as in tracking mode, but the difference with the Hor Actual will in this case 

be rather large. The SpeedControl task takes care of all the dynamics involved. 

 

3.1.3 SpeedControl 

The SpeedContol task controls the speed of the stepper motors. This task in fact determines 
the complete dynamic behaviour of the controller, based on telescope parameters and the 

Actual and Target Horizontal coordinates. The evaluation is done about 10 times per second. 

All calculations take place in the telescope coordinate system, so no time consuming 

transformations are required. The output of the evaluation are Interval settings for the 

Stepper Control ISR, i.e. the number of interrupts to wait until pulsing a stepper. 

 

 

 
 

calculate Intervals 

wait for 0.1 sec clock 

clock pulse: 

 

 

The SpeedControl task needs to ensure that acceleration and speed remain within the limits 

that are defined for the driven telescope/mounting system. When a slew is started it is 

tempting to go to maximum speed directly, but the forces required to start the telescope 

mass moving would be enormous. Also this would result in missing steps, which has a bad 

effect on accuracy. For this reason a gradual acceleration must be ensured by configuring a 

limiting parameter. The same applies to maximum speed, although this will probably be 

determined by the driving controller and the steppers rather than the telescope. 
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 +amax

-amax

vmax

∆x

vtrack

 

 

The diagram above shows the relation between acceleration (a), speed (v) and 
displacement (x). As can be seen, the acceleration behaviour is a straightforward on/off 

process: we’re either accelerating (+/-Amax) or we’re not. As long as acceleration is on, the 

speed changes, but up to a maximum (vmax). When acceleration is off, speed remains 

constant. When the speed is constant, the rate of displacement is also constant, i.e. a 

straight (usually slanting) line. 

The target speed is determined by the difference between Actual and Target Hor-Ele 
coordinates. As long as the target (or maximum) speed ( in either direction) is not reached, 

there is an acceleration. 

When the target position is nearing, deceleration should kick in. The way this is done is 

carefully designed, so that the Target will be reached smoothly and overshoot is prevented. 

To achieve this, usually a PID control algorithm is applied (PID: Proportional-Integral-

Derivative). For most stepper systems no independent position feedback is used and control 
is done by means of an open loop algorithm. Still this algorithm uses the actual proportional 

(speed), integral (position) and derivative (acceleration) information to derive the control 

settings. 

Each Xform interval (1 sidereal second) is divided in a fixed number of slots. Each slot the 

SpeedControl task runs once and hence this is considered the unit of time. Speed is defined 

as number of steps per slot, an acceleration the speed variation per slot. Every slot, the 

SpeedControl task determines the speed for the coming slot, and then sets the ISR counter 

intervals accordingly. It is the determination of the new speed setting that is the actual 

control algorithm. 

 

For the prototype, the following parameters apply: 

Xform interval  1000 ticks 

SpeedControl slot  100 ticks 

ISR rate  10000 per second 

  1000 per slot 

Max speed  5000 steps/second 

 Vmax 500 steps/slot 

Max acceleration Amax 50 steps/slot2 
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Each slot the algorithm calculates whether the steppers need to accelerate or decelerate. If 

the controller is in slewing mode, this can be derived analytically from current speed, Max 

acceleration and number of steps to go. 

First off, the required speed to reach the target in the remainder of the Xform interval is 

derived from the number of steps left to reach target, Q: 

s
Q

Vreq =  ,  

where s is the number of remaining slots in the current interval. 

If the required speed is less than Amax, it can be assumed we are either tracking or at most 

moving or centering. The required speed is then used directly to control the steppers, so it 

will become the actual speed. This way, corrections are smeared out over an Xform interval. 

If Vreq > Amax , it can be assumed the controller is in slewing mode and thus different rules 

apply. First off, it needs to be evaluated whether a deceleration should be initiated in order 

to reach the target position at the same time as being back to tracking speed. 

 

 
Vact 

Vtrk 

6 5 4 3 

Amax 

7 

v 

s 8 2 

 

Steps during deceleration 

 

In the graph above the speed v is shown as a function of slot counter s, during a 

deceleration phase. The tracking speed Vtrk is derived from the increment number of steps 

in target position, between successive Xform ticks. It is close to 0, when compared to Amax, 
a fact which can be used in the approximations. 

The number of deceleration stages is: 

maxA
V

n act=  

The number of steps to be made in the deceleration phase equals the shaded area: 

( )
max

1

1

2

2

1
max AnniAN

n

i

⋅−=⋅= ∑
−

=

 

If the number of steps left to target position Q is approximately equal to or smaller than N, 

the deceleration should be started. If Q is larger than N, an acceleration should be done. 

Of course, acceleration can only happen up to the speedlimit, Vmax , is reached. 

 

The newly calculated speed is passed to the StepperControl function by means of interval 
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counter settings (Hor Interval). Lower speeds will have higher counter values. The 

SpeedControl task also takes care of the direction, which is usually a bit value sent to the 

current driver. The StepperControl ISR then only has to deal with positive counters. 

 

3.1.4 StepperControl 

The stepper speed calculated by the SpeedControl task determines the delay that has to be 

inserted between two successive stepper pulses. Higher speed means lower delay, until half 

the timer frequency is reached, which defines the maximum speed. 

 

 

0 1 2 0 1 2 N N

 

 

So the delay counters are filled in by the SpeedControl task, and all the high speed ISR 

needs to do is decrement this counter. When 0 is reached the bit is raised and the counter 
reloaded, on the next interrupt the bit is lowered again. In fact the low condition is defined 

by count being any other value than 0. 

 

From this it is clear that the maximum step frequency can be only half the interrupt 

frequency. In other words, a 100µsec interrupt timer can deliver a stepper frequency of 

5000Hz. 

 

 

decrement Hor-counter 

Hor pulse high 

update Hor-Act 

interrupt: 

compare to 0 

load Hor-counter 

> = 

Hor pulse low 

decrement Ele-counter 

Ele pulse high 

update Ele-Act 

compare to 0 

load Ele-counter 

> = 

Ele pulse low 

 

StepperControl ISR algorithm 

 

The ISR logic is shown in the diagram above. For each stepper there are only a few 

instructions to be executed: decrement counter, compare to 0, set/reset pulse bit, set/reset 

direction bit, reload counter if necessary. Such an ISR does not require any context 

switching and can be implemented as a fast ISR. 
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3.1.5 Monitor 

In the background, lowest priority, a Monitor task is running. This task listens to the wired 

RS232 port, for either terminal commands or an autoguider. The port can be used to set the 

configuration bits and for debugging. 

 

3.1.6 Fixed Point operation 

In order to make the various transformations doable on a small controller, floating point 

operations must be avoided and hence a fixed point library is implemented. A float consists 

of a mantissa and an exponent portion, comparable with the so-called scientific notation on 

a calculator.  

As an example, the float <0.12345678e04> stands for <1234.5678>. The great advantage 

of using floats is that they scale very well; the range is in fact determined by the exponent. 

A big disadvantage is that the accuracy of a float is not so good, so in most cases a double 

is used instead. This has a double precision, but also double the aount of bits. Also the 

floating point operations require much more performance than do fixed point variables. For 

this reason floating point operations are usually done in a co-processor, named floatin pint 

unit (FPU). 

So, for a micro contorller fixed pint operations are the best choice, but these need a bit of 

planning. An FP variable in fact is an integer with a predefined structure, and this means 

that FP operations can be don with integer instructions. 

In FP variables the word length (e.g. 32 bits) is split in an integer part and a fraction part. 

The number of fraction bits determines precision, and the number of integer bits determines 

the range. The split can be tuned for the specific use case. 

For the controller a precision of 20 fraction bits is chosen, which boils down to better than 1 

part in a million (0.000001). The integer part is 11 bits an dthe remaining bit is used as a 

sign, as in 2’s-complement fashion. The range therefore is -2048 to +2047. The notation for 

such an FP format is F12.20. For angles this is sufficient, and the precision also suffices 

since we need about a tenth of an arc second. 

Multiplication and division works about like it was teached on primary school. Multiply as 

integers, and then scale back to the right precision. When two F12.20 numbers are 
multiplied, it results in an F24.40 number, which should be right shifted by 20 bits and 

masked off to get back to F12.20. Care must be taken to prevent overflows. 

Multiplication of an F12.20 with a straight integer (in fact an F32.0) does not require any 

shifting. Division has similar operation, but here a pre-shift left is utilized instead of a post-

shift right. 

The fixed point library contains the operations needed for the transformations: 

fixmul(y,x); /* y*x                      */ 

fixdiv(y,x); /* y/x                      */ 

fixsin(y); /* sin(y)                   */ 

fixcos(y); /* cos(y)                   */ 

fixatan2(y,x); /* arctan(y/x)              */ 

fixasin(y); /* arcsin(y)                */ 

fixsqrt(y); /* √(y)                     */ 

 

In this set op operations all parameters and results are in a 32bit fixed point format (fp32), 

where the precision is definable. Furthermore there are various constants defined which can 
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be used for transformations. 

Another optimization is to used “Grads” instead of degrees for indicating angles. It makes 

table lookup more efficient, and that is exactly what the trig functions use. There are 256 

Grads in a right angle (90 degrees). 

The required linear algebra is implemented in an additional xform library, which uses the 

above FP functions. 

 

3.1.7 Operating system: “Juggler” 

Especially for this purpose a real time operating system (RTOS) has been implemented, 

named Juggler. It is a minimalistic RTOS, which just takes care of multi-tasking, inter-task 

synchronisation and timing. It has the concept of timeslices, enabling pre-emption of long 

runing tasks. However, in general at each interrupt or system call a reschedule is done that 

will result in a task switch when a higher prio task is ready to run. The Juggler 

implementation has very low overhead and is made in such a way that it could easily be 
ported to other processors. For more information see elsewhere on the website. 
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3.2 Controller Hardware 

As already shown in the block diagram in section 1.2, the heart of the controller hardware is 

formed by a Microchip 30F4011 digital signal controller.  

 

Prototype schematic 

 

The schematic shows the parts that form the business logic of the prototype:  

• the 30F4011 processor,  

• the RN41 Bluetooth module and  

• the RS232 interface. 

Of both communications interfaces (RN41 and MAX232) only the dataleads are used. The 

RN41 by default has a bitrate of 115k2, which is a tad high for the 4011. For that reason 

the prototype has a modification to force the bitrate to 9600 by pulling PIO7 HIGH (i.e. pin4 
to 3V3). 

Apart from the dataleads, two control lines are passed from RN41 to 4011:  

• PIO2, for indication of ‘connected’ state, HIGH when connected, LOW otherwise 

• RESET, to enable forced reset of the RN41 from SW. 
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The B3 (port B, bit3) pin of the 4011 has been connected to a LED, which is used by the SW 

to indicate whether it is alive. For this purpose it is flashed by the Xform task, every time it 

runs (once a second). 

Port E of the 4011 is connected to the current driver interface, for stepper pulses and 

direction. The transceivers are not shown here. 

Finally, a programming interface is connected (PGC, PGD, Vpp), but also not shown in the 

partial schematic. 

 

 

 

Prototype PCB layout 

The board layout shows the placement of the various components. All user interfaces 

(except the ICD2 program/debug interface) are on one side, which should ease the 

integration in a box. Notice the absence of ground plane around the antenna area of the 

Bluetooth module. The PCB should for the same reason be put in a non-conducting 

enclosure… 

 

 



 

 

 

© Arjan te Marvelde page 28 

 

4 The transformations applied 

4.1 Initialisation 

Point telescope south, and to the horizon. For best accuracy the telescope should be level 

with the azimuthal plane. Switch on the controller, make connection with planetarium 

program, initialize the controller with data from planetarium (i.e. location and time). 

 

 

(Az, Alt) = (0, 0) 

(α, δ) = (LST, 90-Lat) 

(α, δ) = (LST, 0) 
(α, δ) = (0, 0) 

µ = LST 

South 

Az 

δ, Alt 

µ 

 

Coordinates near South horizon 

 

On the local meridian, viewing South, the hour angle (µ) by definition is 0. This means that 

the RA (α) equals the local sidereal time (LST). Conversely, where the RA is 0, the hour 

angle equals LST. Direction of µ and α are opposite: α increases in eastward direction.  

Where the meridian crosses the horizon, Azimuth and Altitude are defined as 0. The 

Declination in this point by definition is 90º-Latitude. Azimuth increases eastwards. 

The LST can be deduced from location and time. Further, the controller will assume that the 

starting direction of the telescope is on (Az,Alt)=(0,0). An initial transformation matrix can 

now be deduced based on the local latitude alone. 

From the above follows that the matrix to go from equatorial (HA-Dec) to horizontal (Az-Alt) 

direction vector should describe a rotation about the y-axis (from scope to the east) over an 

angle of (90º - Lat). This matrix then becomes: 















 −

=



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
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




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−−−

=

)sin(0)cos(

010

)cos(0)sin(

)90cos(0)90sin(

010

)90sin(0)90cos(

latlat

latlat

latlat

latlat

T   

Note that, contrary to most other systems, the Azimut angle is taken east from the south 

(instead of east from the north). 

The inverse matrix is easily found by adjugation: 
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















−

=−

)sin(0)cos(

010

)cos(0)sin(
1

latlat

latlat

T  

 

Hence all that needs to be done is calculate the sine and cosine of the latitude, and fill in the 

initial matrix values.  

 

4.2 Calibration 

A calibration in practise takes the following steps: 

• Measure Hor-Ele directions of three known stars 

• Calculate direction vectors with (1) 

• Calculate the transformation matrix with (5) 

• Calculate the inverse transformation matrix 

 

From now on the calibrated transformation can be used. Calibration can be made more 

accurate by adding calibration measurements. The oldest set will then be discarded in favor 

of the new measurement.  

To get from one to the other system, the following steps are taken: 

• Determine direction vector with (1a) or (1b):  
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• Execute the transformation with (4a) or (4b): 





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
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• Determine coordinates with (2) or (3): 
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4.3 Determination of an inverse matrix 






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The adjugated of T is determined as follows: 

( ) ( ) ( )
ij
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where Mij is minor of element tij van T. The minor matrix can be obtained by omitting row i 

and column j. So, for element tt12 the adjugated value is: 

( )
3213331212

tttttt ⋅−⋅−=  

Finally, the determinant of T is calculated as follows: 

( )
322311332112312213322113312312332211

det ttttttttttttttttttT ⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=  

If the transformation T is a pure rotation, then det(T) = 1. In practise the value will 

probably be close. 
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5 LX200 commandset 

5.1 Command Format 

All commands are strings starting with ‘:’ and terminated with ‘#’.  

<CR> and <LF> may be ignored. 

Return strings are usually also terminated with a ‘#’. 

 

Parameter format: 

 

Format Example Range Description 

HH:MM.T 05:47.4 00:00.0 - 
23:59.9 

Hours, minutes, and tenths of minutes. 

sDD*MM +45*59 -90*00 - +90*00 Signed degrees and minutes (the '*' represents ASCII 223 

which appears on the handbox as a degree symbol). 

DDD*MM 254*09 000*00 - 359*59 Unsigned degrees and minutes. 

HH:MM:S

S 

13:15:36 00:00:00 - 

23:59:59 

Hours, minutes, and seconds. 

MM/DD/YY 02/06/92 01/01/00 - 

12/31/99 

Month, day, and year. The two digit year indicates the 

following: 92-99 = 1992-1999 00-91 = 2000-2091 

sHH -5 -24 - +24 Signed hour offset. 

NNNN 3456 0000 - 9999 Four digit object number. 

sMM.M 02.4 05.5 - 20.0 Signed magnitude value. 

NNN 134 000 - 200 Three digit object size (minutes). 

DD* 56* 00* - 90* “Higher” parameter (degrees). 

TT.T 59.2 56.4 - 60.1 Tracking “frequency.” 

<obj> 
info 

CNGC1976 
SU 

DNEBMAG 
3.9 SZ 66.0' 

n/a Object information. 

Ok 1 0 or 1 Status value returned after setting values. If the valueis 
legal 1 is returned, otherwise 0 is returned. 

 

5.2 General Telescope Information 

 

Command Returns Description 

:GR#  +HH:MM.T# Gets the current Right Ascension. 

:GD#  sDD*MM# Gets the current Declination. 

:GA#  sDD*MM# Gets the current Altitude. 

:GZ#  DDD*MM# Gets the current Azimuth. 

:GS#  HH:MM:SS# Gets the current sidereal time. 

:SS 

HH:MM:SS# 

 Ok Sets the sidereal time. 

:GL# 

:Ga# 

 HH:MM:SS# Gets the local time either in 24 hour (GL)  

or 12 hour (Ga) format. 

:SL  Ok Sets the local time.  
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HH:MM:SS# NOTE: The parameter should always be in 24 hour format. 

:GC#  MM/DD/YY# Gets the calendar date. 

:SC 

MM/DD/YY# 

 Ok Sets the calendar date.  

NOTE: After the Ok, if the date is valid, two strings will be sent. The 
first will contain the message “Updating planetary data,” the second 

(sent after the planetary calculations) will contain only blanks. Both 
strings will be terminated by the “#” symbol. 

:Gt#  sDD*MM# Gets the latitude of the currently selected site. 

:St sDD*MM#  Ok Sets the latitude of the currently selected site. 

:Gg#  DDD*MM# Gets the longitude of the currently selected site. 

:Sg DDD*MM#  Ok Sets the longitude of the currently selected site. 

:GG#  sHH# Gets the offset from Greenwich Mean Time. 

:SG sHH#  Ok Sets the offset from Greenwich Mean Time. 

:W1#  

:W2# 

:W3# 

:W4# 

 Nothing Sets the current site number. 

 

5.3 Telescope Motion 

Undocumented command:  

:Mg{e,s,w,n}nnnn# , where nnnn is nr of msec to move in e, s, w, or n direction 

 

Command Returns Description 

:Mn#  

:Ms#  

:Me#  

:Mw# 

Nothing Starts motion in the specified direction at the current rate. 

:MS# 0, 1, 2, or 4  Slews telescope to current object coordinates.  

0 is returned if the telescope can complete the slew,  

1 is returned if the object is below the horizon,  

2 is returned if the object is below the “higher” limit, and  

4 is returned if the object is above the lower limit.  

If 1, 2, or 4 is returned, a string containing an appropriate message 

is also returned. 

:MA# 0 Slews telescope to object alt-az coordinates (set with the Sa and Sz  
Commands). This  Command only works in the LAND and ALTAZ 

modes. 

:Qn#  

:Qs#  

:Qe#  

:Qw# 

Nothing Stops motion in the specified direction. Also stops the telescope if a 

slew to an object is in progress. 

:Q# Nothing Stops a slew to an object. 

:RG#  

:RC#  

:RM#  

Nothing Sets the motion rate to guide (RG), center (RC), find (RM), or slew 

(RS). 
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:RS# 

:Sw N# Ok Sets the maximum slew rate to “N” degrees per second where N is 
2 through 4. 

 

5.4 Home Position 

 

Command Returns Description 

:hS# Nothing Starts a home position search and saves the telescope position.  

NOTE: All Commands except “:Q#” and “:h?#” are disabled during 

the search. 

:hF# Nothing Starts a home position search and sets the telescope position 

according to the saved values.  

NOTE: All Commands except “:Q#” and “:h?#” are disabled during 
the search. 

:hP# Nothing Slews the telescope to the home position. 

:h?# 0, 1, or 2 Returns the home status: 0 if home search failed or not yet 

attempted, 1 if home position found, or 2 if a home search is in 

progress. 

 

5.5 Library/Objects 

 

Command Returns Description 

:Gr# HH:MM.T# Gets object right ascension. 

:Sr HH:MM.T# Ok Sets object right ascension. 

:Gd# sDD*MM# Gets object declination. 

:Sd sDD*MM# Ok Sets object declination. 

:Sa sDD*MM# Ok Sets object altitude (for MA Command). 

:Sz DDD*MM# Ok Sets object azimuth (for MA Command). 

:CM# (see 

description) 

Sync. Matches current telescope coordinates to the object 

coordinates and sends a string indicating which object’s coordinates 

were used. 

:Gy# GPDCO# Gets the “type” string for the FIND operation. A capital letter means 

that the corresponding type is selected while a lower case letter 

indicates it is not. 

:Sy GPDCO# Ok Sets the “type” string for the FIND operation. 

:Gq# SU#, EX#, 

VG#, GD#, 
FR#, PR#, or 

VP# 

Gets the current minimum quality for the FIND operation. 

:Sq# Nothing Steps to the next minimum quality for the FIND operation. 

:Gh# DD*# Gets the current “higher” limit.\ 

:Sh DD# Ok Sets the current “higher” limit. 

:Go# DD*# Gets the current “lower” limit. 

:So DD*# Ok Sets the current “lower” limit. 

:Gb# :Gf# sMM.M# Gets the brighter (Gb) or fainter (Gf) magnitude limit for the FIND 
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operation. 

:Sb sMM.M#  

:Sf sMM.M# 

Ok Sets the brighter (Sb) or fainter (Sf) magnitude limit for the FIND 

operation. 

:Gl# :Gs# NNN'# Gets the larger (Gl) or smaller (Gs) size limit for the FIND 

operation. 

:Sl NNN#  

:Ss NNN# 

Ok Sets the larger (Sl) or smaller (Ss) size limit for the FIND operation. 

:GF# NNN'# Gets the field radius of the FIELD operation. 

:SF NNN# Ok Sets the field radius of the FIELD operation. 

:LF# Nothing Starts a FIND operation. 

:LN# Nothing Finds the next object in a FIND sequence. 

:LB# Nothing Finds the previous object in a FIND sequence. 

:Lf# (see 

description) 

Performs a FIELD operation returning a string containing the 

number of objects in the field and the object that is closest to the 
center of the field. 

:LC NNNN#  

:LM NNNN#  

:LS NNNN# 

Nothing Sets the object to the NGC (LC), Messier (LM), or Star (LS) 
specified by the number. Planets are “stars” 901- 909. The object 

type returned for LC and LS  Commands depends on which object 

type has been selected with  the Lo and Ls Commands (see below). 

:LI# <obj> info# Gets the current object information. 

:Lo N# Ok Sets the NGC object library type. 0 is the NGC library, 1 is the IC 

library, and 2 is the UGC library. This operation is successful only if 

the user has a version of the software that includes the desired 

library. 

:Ls N# Ok Sets the STAR object library type. 0 is the STAR library, 1 is the 

SAO library, and 2 is the GCVS library. This operation is successful 
only if the user has a version of the software that includes the 

desired library. 

 

5.6 Miscellaneous 

 

Command Returns Description 

:B+#  

:B-#  

:B0#  

:B1#  

:B2#  

:B3# 

Nothing Increases (B+) or decreases (B-) reticle brightness, or sets to one 

of the flashing modes (B0, B1, B2, or B3). 

:F+#  

:F-#  

:FQ#  

:FF#  

:FS# 

Nothing Starts focus out (F+), starts focus in (F-), stops focus change (FQ), 
sets focus fast (FF), or sets focus slow (FS). 

:GM#  

:GN#  

:GO#  

:GP# 

XYZ# Gets SITE name (XYZ). M through N correspond to 1 through 4. 
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:SM XYZ#  

:SN XYZ#  

:SO XYZ#  

:SP XYZ# 

Ok Sets SITE name. 

:GT# TT.T# Gets the current track “frequency.” 

:ST TT.T# Ok Sets the current track “frequency.” 

:TM#  

:TQ#  

:T+#  

:T-# 

Nothing Switch to manual (TM) or quartz (TM). Increment (T+) or 

decrement (T-) manual frequency by one tenth. 

:D# (see 

description) 

Gets the distance “bars” string. 

:AL#  

:AP#  

:AA# 

Nothing Sets the telescopes alignment type to LAND, POLAR, or ALTAZ. 

:r+#  

:r-# 

Nothing Turns the field de-rotator on (:r+#) and off (:r-#). 

:f+#  

:f-# 

Nothing Turns the fan on (:f+#) and off (:f-#). 

 

 

5.7 Reference stars 

 

Name Right Ascension Declination Mag 

 h m s  d m s  

Acamar 02 58 15.6468 - 40 18 17.045 3.22 

Achernar 01 37 42.8435 - 57 14 12.300 0.54 

Acrux 12 26 35.8949 - 63 05 56.570 1.28 

Adara 06 58 37.5458 - 28 58 19.517 1.53 

Albireo 19 30 43.2879 + 27 57 34.817 3.08 

Alcor 13 25 13.5371 + 54 59 16.614 4.00 

Alcyone 03 47 29.0755 + 24 06 18.503 2.88 

Aldebaran 04 35 55.2417 + 16 30 33.444 0.99 

Alderamin 21 18 34.7737 + 62 35 08.067 2.47 

Algenib 00 13 14.1516 + 15 11 00.933 2.84 

Algieba 10 19 58.1346 + 19 50 30.925 2.23 

Algol 03 08 10.1123 + 40 57 20.501 2.11 

Alhena 06 37 42.7283 + 16 23 57.381 2.02 

Alioth 12 54 01.7469 + 55 57 35.370 1.76 

Alkaid 13 47 32.4385 + 49 18 47.708 1.86 

Almaak 02 03 53.9551 + 42 19 47.033 2.17 

Alnair 22 08 13.9881 - 46 57 39.784 1.77 

Alnath 05 26 17.5162 + 28 36 26.838 1.68 

Alnilam 05 36 12.8117 - 01 12 06.924 1.72 
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Alnitak 05 40 45.5243 - 01 56 33.277 1.90 

Alphard 09 27 35.2433 - 08 39 30.970 1.99 

Alphekka 15 34 41.2728 + 26 42 52.872 2.22 

Alpheratz 00 08 23.2562 + 29 05 25.541 2.06 

Alshain 19 55 18.7967 + 06 24 24.390 3.72 

Altair 19 50 46.9994 + 08 52 05.980 0.93 

Ankaa 00 26 17.0192 - 42 18 21.969 2.40 

Antares 16 29 24.4586 - 26 25 55.213 1.07 

Arcturus 14 15 39.6698 + 19 10 56.706 0.16 

Arneb 05 32 43.8168 - 17 49 20.219 2.59 

Bellatrix 05 25 07.8613 + 06 20 58.929 1.66 

Betelgeuse 05 55 10.3009 + 07 24 25.420 0.57 

Canopus 06 23 57.0985 - 52 41 44.190 -0.63 

Capella 05 16 41.3591 + 45 59 52.768 0.08 

Castor 07 34 36.1470 + 31 53 18.825 1.58 

Cor-Caroli 12 56 01.6658 + 38 19 06.182 2.89 

Deneb 20 41 25.9137 + 45 16 49.218 1.33 

Denebola 11 49 03.5961 + 14 34 19.352 2.13 

Diphda 00 43 35.3699 - 17 59 11.679 2.05 

Dubhe 11 03 43.6659 + 61 45 03.693 1.82 

Enif 21 44 11.1539 + 09 52 30.044 2.39 

Etamin 17 56 36.3702 + 51 29 19.998 2.23 

Fomalhaut 22 57 39.0459 - 29 37 20.046 1.23 

Hadar 14 03 49.3987 - 60 22 23.006 0.64 

Hamal 02 07 10.4026 + 23 27 44.709 2.02 

Izar 14 44 59.2219 + 27 04 27.170 2.50 

Kaus-Australis 18 24 10.3154 - 34 23 04.604 1.81 

Kocab 14 50 42.3281 + 74 09 19.798 2.06 

Markab 23 04 45.6531 + 15 12 18.947 2.49 

Megrez 12 15 25.5571 + 57 01 57.432 3.30 

Menkar 03 02 16.7733 + 04 05 23.093 2.55 

Merak 11 01 50.4799 + 56 22 56.730 2.35 

Mintaka 05 32 00.4000 - 00 17 56.738 2.23 

Mira 02 19 20.7872 - 02 58 39.534 6.54 

Mirach 01 09 43.9244 + 35 37 13.876 2.08 

Mirphak 03 24 19.3733 + 49 51 40.260 1.81 

Mizar 13 23 55.5367 + 54 55 31.271 2.22 

Nihal 05 28 14.7235 - 20 45 34.001 2.84 

Nunki 18 55 15.9288 - 26 17 48.280 2.07 

Phad 11 53 49.8289 + 53 41 40.942 2.43 

Polaris 02 31 49.1452 + 89 15 50.772 2.00 

Pollux 07 45 18.9433 + 28 01 34.423 1.22 

Procyon 07 39 18.1183 + 05 13 29.976 0.40 

Rasalgethi 17 14 38.8604 + 14 23 24.880 3.37 
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Rasalhague 17 34 56.0724 + 12 33 36.099 2.09 

Regulus 10 08 22.3127 + 11 58 01.955 1.41 

Rigel 05 14 32.2700 - 08 12 05.916 0.28 

Sadalmelik 22 05 47.0386 - 00 19 11.465 2.94 

Saiph 05 47 45.3760 - 09 40 10.779 2.06 

Scheat 23 03 46.4589 + 28 04 58.041 2.47 

Shaula 17 33 36.5192 - 37 06 13.782 1.63 

Shedir 00 40 30.4403 + 56 32 14.382 2.25 

Sirius 06 45 08.9433 - 16 42 57.712 -1.44 

Spica 13 25 11.5765 - 11 09 40.754 1.06 

Tarazed 19 46 15.5807 + 10 36 47.757 2.71 

Thuban 14 04 23.3531 + 64 22 33.086 3.65 

Unukalhai 15 44 16.0742 + 06 25 32.261 2.63 

Vega 18 36 56.3364 + 38 47 01.290 0.03 

Vindemiatrix 13 02 10.5987 + 10 57 32.876 2.84 

 

 

 


